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A B S T R A C T

The aim of this study is to identify an optimal predictive model for ciguatera poisoning and to determine which 
variables and time lags best explain the number of cases reported in Florida between 2006 and 2020. Ciguatera 
poisoning is a debilitating condition caused by consuming coral reef fish contaminated with ciguatoxins, which 
originate from toxin-producing dinoflagellates and biomagnify through the food chain. In severe cases, the illness 
can be fatal. Global climate change is expected to increase both the incidence of ciguatera poisoning and its 
geographic range, extending from tropical and subtropical reefs into temperate regions. This makes under
standing and predicting its dynamics particularly urgent, as millions of people worldwide depend on reef fish as a 
dietary staple. To address this need, we developed an integrated approach combining wavelet cross-coherence 
analysis with a count modeling framework. Candidate predictors included cumulative monthly landings of 
Amberjack, Red Snapper, Red Grouper, and Scamp Grouper; the number of tropical cyclones; maximum ocean 
temperatures; precipitation; season; and Florida’s human population. The optimal model identified was a Zero- 
Inflated Negative Binomial model. Results showed positive associations between ciguatera cases and (i) 
maximum ocean temperatures, (ii) storm frequency, (iii) fish landings, and (iv) human population size, alongside 
a negative relationship with precipitation. By establishing a robust predictive framework, this study advances 
understanding of the environmental and anthropogenic drivers of ciguatera poisoning. The findings provide a 
foundation for forecasting outbreaks and offer actionable insights to fisheries and public health agencies aiming 
to reduce risks for Florida residents and tourists.

1. Introduction

Ciguatera poisoning is a common fish-borne illness annually 
affecting 50,000–200,000 people worldwide (Friedman et al., 2008; 
Gingold et al., 2014). Ciguatera poisoning occurs when humans ingest 
fish that contain high concentrations of ciguatoxin that are produced by 
some species of dinoflagellate microalgae, such as Gambierdiscus poly
nesiensis and Gambierdiscus excentricus, commonly found on coral reefs 
(Bagnis et al., 1980; Friedman et al., 2017; Ansdell, 2019). Herbivorous 
reef fish that consume these microalgae accumulate the associated 
ciguatoxin in their tissues, leading to biomagnification of the toxins 
through the food chain. Over 400 species of fish, including Grouper, 
Amberjack, Snapper, Surgeonfish, and Barracuda, have been previously 

recorded with ciguatoxins in their tissue (Tester et al., 2010). The 
ingestion of carnivorous fish with high concentrations of ciguatoxins is 
dangerous to humans (Randall, 1958), causing symptoms ranging from 
gastrointestinal irritation, cardiovascular failure, paralysis, and, in se
vere cases, can lead to death (Bagnis et al., 1980; Lewis, 2006; Palafox 
and Buenconsejo-Lum, 2001).

The most vulnerable human populations to ciguatera poisoning rely 
on wild-caught fish found on tropical and subtropical coral reefs. Among 
the societal problems associated with ciguatera poisoning outbreaks are 
increased health costs, a reduced labor market, reduced food sources, 
loss in fish sales, and declining tourism (Lewis, 1992). Since there are no 
cheap or reliable tests for ciguatera poisoning, health facilities are left 
reporting symptoms, administering intravenous therapy, and 
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prescribing dietary changes (Gingold et al., 2014). The lack of concrete 
test results in poor observational data collection on the number of cases, 
making this illness difficult to study.

Previous studies that sought to predict ciguatera poisoning have 
primarily been conducted in the Pacific Ocean. Laboratory experiments 
show that optimal dinoflagellate microalgal growth occurs at tempera
tures around 29 ◦C, partially explaining why ciguatera poisoning is most 
prevalent in tropical regions with high ocean temperatures (Tester et al., 
2010). Elevated temperatures also lead to coral bleaching and can lead 
to coral mortality, resulting in open spaces for dinoflagellate expansion 
(Randall, 1958; Rongo and van Woesik, 2011). Similarly, cyclones and 
hurricanes have been linked to ciguatera poisoning, as these distur
bances open up space for dinoflagellate growth and expansion on coral 
reefs (Rongo and van Woesik, 2011, 2013). Ciguatera poisoning is pre
dicted to become more prevalent with rising ocean temperatures and 
intensifying storms, however, previous studies in southern Florida had 
varying results regarding the impact of storms on ciguatera poisoning 
cases (Gingold et al., 2014; Baker et al., 2008; Chan, 2016; Barrett, 
2014). The varying results across studies may be in part related to 
geographical differences in fish species composition and differences in 
temporal lags associated with predictive variables. In this study, we 
developed and evaluated an optimal predictive model for ciguatera 
poisoning in Florida to identify the key environmental, ecological, and 
demographic variables, as well as their potential time-lagged effects that 
best explain the number of reported cases between 2006 and 2020.

2. Methods

This study followed a multi-step process to identify the most effective 
predictive model for ciguatera poisoning in Florida between 2006 and 
2020. The workflow began with data collection from multiple publicly 
available sources, followed by preprocessing and transformation of 
variables to ensure comparability across time. Reported ciguatera cases 

were then analyzed alongside candidate predictors, including fish 
landings, ocean temperature, precipitation, tropical cyclone frequency, 
seasonal indicators, and human population. Exploratory analyses were 
conducted to evaluate temporal patterns and potential lag effects, after 
which statistical modeling was performed using count-based ap
proaches. Alternative models were compared to determine the best fit, 
with the Zero-Inflated Negative Binomial framework ultimately selected 
as the most appropriate for handling the over dispersed and zero- 
inflated nature of the case data. This process allowed for a systematic 
assessment of both environmental and demographic drivers of ciguatera 
incidence. The schematic of the proposed methods, from data collection 
and preprocessing to modeling ciguatera fish poisoning cases in Florida 
from 2006 to 2020, is depicted in Fig. 1. Each process shown in the flow 
diagram is discussed in detail in this section.

2.1. Study site description

This study was conducted across the entire state of Florida, with data 
collected statewide for all predictor variables. Reported cases of cigua
tera poisoning were obtained from the publicly available

2.2. Reported Ciguatera cases

Diseases Frequency Report maintained by the Florida Department of 
Health (Florida Department of Health, 2021). All documented incidents 
between 1992 and 2020 were initially included in the analysis. Data was 
obtained for all 67 counties in the state of Florida. It should be noted that 
some counties did not report any ciguatera poisoning cases using the 
specified search filters and thus did not appear in the data. The location 
of exposure, type of contaminated fish, and other specifications about 
the illnesses were not described in the report. For example, a fish con
taining ciguatoxin could have been eaten in Broward County and then 
reported from a hospital in Brevard County, where the patient received 

Fig. 1. Flow diagram of the methods to predict ciguatera poisoning cases in Florida from 2006 to 2020, starting with collecting predictors, processing the data, 
and modeling.
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medical care. To account for the lack of spatial metadata, the total 
number of ciguatera poisoning cases in the entire state of Florida for 
each month was created by summing the counts of each county. This 
summation resulted in a data set comprising the total number of re
ported Florida ciguatera poisoning cases, sorted by month, beginning in 
1992 and concluding in 2020.

Before 2006, it was typical for a month to have fewer than five cases. 
The longest duration, which each month had fewer than five cases, 
occurred between 2002 and 2006. After 2006, reported outbreaks 
increased, with a maximum of 20 cases monthly. Also, months with zero 
ciguatera poisoning cases became less frequent. With the significant 
variation in ciguatera poisoning over time, and with research suggesting 
inconsistencies and calling for a change in reporting (Begier, 2006), the 
most recent data from the years 2006–2020 were used in this study. The 
observed number of ciguatera poisoning cases from 2006 to 2020. are 
shown in Fig. 2a.

2.3. Temperature and precipitation data

Rising ocean temperatures have been previously associated with the 
expansion of ciguatoxin-containing dinoflagellates (Barrett, 2014). This 
expansion is associated with increasing growth rates and damage to the 
coral reef habitat (Steven R. Kibler, 2015). Coral mortality is caused by 
anomalously high ocean temperatures and the duration of those 
anomalous temperatures. Previously, scientists have used the Coral 
Bleaching HotSpot Product from NOAA as a measure of coral stress from 
temperature (NOAA Coral Reef Watch, 2020). This Hotspot metric 
collected is the difference in degrees Celsius between the highest 

summertime mean temperature at a given site and the highest temper
ature occurring on a particular day at that site. In this study, the HotSpot 
values were gathered from two virtual stations in southern Florida and 
the Florida Keys. The process for matching the resolution of HotSpot 
with monthly ciguatera poisoning cases involved taking the maximum 
temperature value occurring in a month across either virtual site. NOAA 
similarly offers the Degree Heating Week (DHW) data product that 
considers lagged HotSpot values through time, although this was not 
used in the study because it has been specifically designed for corals, and 
the optimal lag for this study could differ.

Previous studies have hypothesized a positive association between 
ciguatera poisoning cases and precipitation. Increased precipitation re
sults in runoff and thus an increase in nutrients or harmful substances 
that cause coral reef degradation, opening up new habitats for the 
proliferation of dinoflagellates with ciguatoxins (Ansdell, 2019). In this 
study, we used the monthly precipitation data of Miami-Dade County 
from the NOAA National Centers for Environmental Information (NOAA 
National Centers for Environmental Information, 2023).

2.4. Number of tropical cyclones

Previous studies in the Pacific Ocean have shown positive relation
ships between ciguatera poisoning and major tropical cyclones (Rongo 
and van Woesik, 2013). Tropical cyclones that may predict ciguatera 
poisoning cases were either tropical storms or hurricanes that crossed 
through southern Florida. Southern Florida was considered the relevant 
impact zone because of the presence of coral reefs, which the 
ciguatoxin-containing dinoflagellates inhabit. Tropical cyclone data 
were acquired from the National Hurricane Center’s (National Hurri
cane Center, 2022) yearly reports, which contained the track of each 
major storm between 1992 and 2020. Previous studies have found that 
the storm’s wind speed, the time of sustained winds, and the physical 
attributes of the coral reef itself determine how much destruction a 
storm causes to a reef (Matan Yuval, 2023; Nystrom, 2001). The data 
collected contained 6-hour snapshots of wind intensities, and thus, the 
wind speeds could not be accurately integrated through time or space. 
To minimize the possibility of false conclusions, the monthly frequency 
of storms was considered (Fig. 2-Top and -Middle).

2.5. Population

The US Census Bureau only provides Florida population data at 10- 
year intervals. To refine the data resolution required for the study, the 
yearly population estimates from 1992 to 2020 were obtained by the 
Bureau of Economic and Business Research at the University of Florida 
(University of Florida Bureau of Economic and Business Research, n.d.). 
To match the monthly ciguatera poisoning resolution with the popula
tion values, the data were interpolated using a fourth-degree polynomial 
fit to the data (Fig. 2-Bottom). The fit had a clear increasing trend, with 
the most rapid increase occurring in the most recent years (2020 and 
2021).

2.6. Season

The season when the ciguatera poisoning case was reported was also 
used as a potential predictor of ciguatera poisoning cases. Winter was 
considered the months from December through February, spring from 
March through May, summer from June through August, and fall from 
September through November.

2.7. Reef fish landings

Commercial fish landings in Florida were collected from the Florida 
Fish and Wildlife Conservation Commission (FWC) (Florida Fish and 
Wildlife Conservation Commission, 2021). The online data tool pro
vided access to data on dozens of fish species in Florida. The monthly 

Fig. 2. Top) Monthly time series from 2006 to 2020 for the reported number of 
ciguatera fish poisoning cases in Florida; Middle) the number of tropical cy
clones in southern Florida: Bottom) The estimated total Florida population 
using a fourth-degree polynomial on the yearly estimates.
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landings, or total weight in pounds, of commercially caught Red Snapper 
(Lutjanus campechanus), Red Grouper (Epinephelus morio), Scamp 
Grouper (Mycteroperca phenax), and Greater Amberjack (Seriola dumer
ili) were collected as potential predictors of ciguatera poisoning. These 
fishes were selected because of their large landing sizes, their variability 
in behavior, and their tendency to contain ciguatoxins. The landings for 
each fish over time are provided in Fig. 3.

2.8. Wavelet coherence analysis

Excluding human population density and season, each predictor is 
expected to have an instantaneous impact as well as a lagged impact on 
the number of ciguatera poisoning cases. This is expected because the 
predictors could be related to multiple steps of the biomagnification 
process, and thus, each monthly predictor value could be related to 
ciguatera poisoning cases over multiple months. With the impossibility 
of collecting all necessary data to attempt the isolation of each step in 
the biomagnification process, an approximation of these relationships is 
necessary to create a relevant lag. Wavelet coherence analysis was 
performed using predictors and the reported number of ciguatera 
poisoning cases to find a generalization of the relations across multiple 
scales over time.

Wavelet transform is a localized time-frequency (or space-frequency) 
analysis to decompose a time series and determine the frequency content 
of narrower local time intervals (Torrence and Compo, 1998). Wavelet 
analysis is performed by taking a small wave called a wavelet (such as 
the Morlet wavelet) and comparing it with short pieces of the original 
time series and assigning a similarity coefficient. This process was 
repeated at different scales by stretching/compressing and shifting the 
time series.

To examine the relationships between ciguatera poisoning cases and 
environmental predictors, cross-wavelet analysis was applied to identify 
the intervals of significance between the lagged predictors and the 
number of reported ciguatera poisoning cases in the time-frequency 
domain.

The wavelet-coherence analysis was then performed to identify the 
coherence of the cross-wavelet transform in the time-frequency domain 
to obtain localized correlation coefficients between the two-time series 
(Grinsted et al., 2004). In this study, wavelet analysis was performed 
using the “wtc” function from the “biwavelet” package in R (Gouhier 

et al., 2021). The heat map of the coefficient of determination (R2) is 
shown in Fig. 4, where regions of significance between the predictors 
and the number of ciguatera poisoning cases were outlined.

The optimal lag for each predictor is determined using the wavelet 
coherence plot by identifying the region in the frequency domain that 
consistently provides high R2 values throughout the study from 2006 to 
2020. The selected temporal region for each predictor represents the 
consistently high correlation between ciguatera poisoning and the pre
dictor’s frequency. For example, in Fig. 4a, there was a clear outline 
shown by pixels marked in red, for the most frequent lag of 
[0–3 months] over the study period (2006–2020). It suggests a likely 
association between red snapper landings and reported ciguatera 
poisoning cases within three months of the fish landing. Notice that a 
climate predictor could impact the observed ciguatera poisoning cases at 
different scales (different time lags) of a predictor. Hence, whenever it 
was suggested by the coherence plot, the predictor was represented 
using two separate lagged parameters in the model.

2.9. Count models

A Generalized Linear Model (GLM) is defined by: 

η(E[y|x]) = xβ (1) 

where η is the link function, E[Y |X] is an n × 1 vector of the expected 
response, X is an n × (K + 1) matrix of predictors, β is (K + 1) × 1 vector 
of coefficients, n is the number of observations, and K is the number of 
predictors in the model. If η is an identity link function, GLM will be 
simplified to a simple/multiple linear regression model. The response in 
the multiple linear regression model can assume continuous values. 
Because the ciguatera poisoning case only assumes non-negative in
tegers, a multiple regression model is not relevant for this data. Each 
observation regarding ciguatera poisoning cases is a non-negative 
integer with a Bernoulli distribution representing reported illness or 
no illness. Hence, a count model is considered for predicting the ex
pected number of ciguatera poisoning cases. A count model assumes that 
the observed response has a discrete distribution, such as a Poisson 
distribution.

Fig. 3. Time series of monthly commercial fish landings in Florida from 2006 to 2020. a) Amberjack; b) Scamp Grouper; c) Red Grouper; d) Red Snapper.
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2.9.1. Poisson model
The probability mass function (PMF) for a Poisson random variable 

is: 

P(Y = k) =
e− λλk

k!
(2) 

with 

E(Y ) = Var(Y ) = λ (3) 

where λ and k are the average and the possible number of ciguatera 
poisoning cases in a given time period. Poisson regression is a GLM with 
a log-link function and with a response variable that follows a Poisson 
distribution. Thus, the expected value of the response is continuous and 
in the space of all real numbers. Modeling count data using Poisson 
regression has the following form: 

Yi ∼ Pois(λi), λi = exp(XT
i β) (4) 

where Xi is the ith predictor vector associated with response Yi. The ex
pected value and variance are as follows: 

E[Yi |Xi ] = Var[Yi |Xi ] = exp(XT
i β) (5) 

This model was not relevant because the equal dispersion assump
tion was not being met, given that ciguatera poisoning was over- 
dispersed, with a mean of 2.272 and a variance of 11.935.

2.9.2. Negative binomial model
To represent over-dispersed count data, a negative binomial (NB) 

distribution can be considered (Number Crunching Statistical Systems 
Software, 2021a): 

εi ∼ Gamma(r, 1/r), f(εi) =
rr

Γ(r)
εr− 1

i e− rεi (6) 

with 

E[εi ] = 1,Var[εi ] =
1
r

(7) 

A NB probability density function (Number Crunching Statistical 
Systems Software, 2021b) is: 

f(Y = yi) =
Γ(yi + α− 1)

Γ(α− 1)yi!

(
α− 1

α− 1 + μi

)α− 1(
μi

α− 1 + μi

)yi

(8) 

where α = 1
r is the dispersion parameter, and mean and variance are: 

E[Yi |Xi ] = exp(XT
i β),Var[Yi |Xi ]

= E[Yi |Xi ] +α(E[Yi |Xi ])
2 (9) 

In this way, the NB distribution is modeled using a Gamma distri
bution as a mixture of Poisson random variables, where µ is the average 
number of events that occur during a specific time period, depending on 
i.

2.9.3. Zero-inflation model
A zero-inflated negative binomial model (ZINB) is a negative bino

mial model that can account for excess zeros. Excess zeros are data 
points that are believed to be zero by a process independent of the count 
process (UCLA Statistical Methods and Data Analytics, n.d.). The 
zero-inflated negative binomial model tests two sets of hypotheses: 

1. An unobserved ciguatera poisoning case is an excess or a true zero.
2. The observed ciguatera poisoning case is from a negative binomial 

distribution.

Fig. 4. Wavelet cross-coherence plots for the number of reported ciguatera poisoning cases in Florida (from 2006 to 2020) with each predictor: a. Red Snapper 
landings; b. Amberjack landings; c. Red Grouper landings; d. HotSpot; e. Frequency of tropical cyclones; f. Monthly precipitation in southern Florida.
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Because many ciguatera poisoning cases are not reported or mis
diagnosed as food poisoning, excess zeros will be considered for 
modeling ciguatera poisoning cases using the aforementioned predictors 
by a ZINB probability distribution (Number Crunching Statistical Sys
tems Software, 2021b): 

P(Yi = j) =
{

πi + (1 − πi) f(Yi = 0i) j = 0
(1 − πi)f(Yi) j > 0 (10) 

with π being the probability that a zero is an excess zero and f (Yi) being 
a NB distribution given by Eq. (8). Thus, ZINB regression combines two 
models (Eq. 10) to yield a single probability of a given number of suc
cesses for each data point. Given that previous literature has estimated 
that a significant number of cases in Florida have been unreported 
(Friedman et al., 2008) and that the ciguatera poisoning cases were over 
dispersed a ZINB model was determined to be most relevant.

2.10. Model selection

After an admissible count model was determined, the predictors that 
can optimally predict ciguatera poisoning cases must be identified. 
Moreover, interactions with biological relevance between predictors 
will be recognized. Therefore, the interactions between each predictor 
with population, season, HotSpot, number of storms, and precipitation 
were considered. These interaction terms were included in the model to 
separate a predictor’s trend that resulted from a relationship with 
another predictor. For example, including the interaction between sea
son and red snapper landings into the model would be expected to 
differentiate the impact of a change in red snapper landings on the 
number of ciguatera poisoning cases depending on the season. The 
interaction could also remove noise from the red snapper landings co
efficient that resulted from consistent seasonal changes. Possible sea
sonal variation is likely from fishing restrictions and randomness in the 
fish population. Thus, each predictor and the interactions mentioned 
above generate the parameters of the full model. Before the optimal 
grouping of parameters was found, each parameter was standardized for 
an even comparison of coefficients. Then, a goodness of fit for the full 
model was tested to initiate a reference point in the model selection 
process.

The predictors of the model were first chosen through a forward 
selection method by optimizing a goodness of fit metric using the Akaike 
Information Criterion (AIC). In turn, predictors are added one by one to 
the model to find the optimal AIC. The forward selection process was 
repeated until there were no parameters left to add to improve the 
model. Then, through a backward selection method, the model was 
pruned by removing the parameters, one parameter at a time, that 
resulted in the least change in AIC. The final model was then validated 
using varying time series splits with the data prior to the split for 
training and the remaining for testing.

3. Results

The optimal lag for each predictor, excluding scamp grouper land
ings, was found using the wavelet cross-coherence plots (Fig. 4). Table 1
describes the relationships, from the cross-coherence plots, between the 
reported number of ciguatera poisoning cases and each parameter. 
Fig. 4a to c show the wavelet cross-coherence plot for the reported 
ciguatera poisoning cases with the amount of Red Snapper, Amberjack, 
and Red Grouper landings, respectively. These plots suggested that a lag 
of 3 months was appropriate as the optimal lag for Red Snapper and Red 
Grouper, whereas there were high R-squared values at 0–2 months 
across all years of the study, suggesting a 2-month lag for Amberjack 
landings.

The wavelet cross-coherence plot between the monthly maximum 
HotSpot value and the reported ciguatera poisoning cases is provided in 
Fig. 4d. There were high R-squared values between 0 and 2 months 

across approximately half of the time period in this study, denoting an 
optimal short-term lag of the current plus previous month for the Hot
Spot parameter. A long-term lag for HotSpot was also selected using the 
previous 8–15 months for the HotSpot parameter and had a correlation 
of 0.522 with the short-term parameter. The wavelet cross-coherence 
plot between the number of tropical cyclones and the reported cigua
tera poisoning cases is provided in Fig. 4e. An optimal short-term lag of 
0 – 3 months was selected for the number of tropical cyclones because 
that lag was significant across all years. Similarly, the long-term lag of 
the previous 32–46 months was considered for tropical cyclones. The 
correlation between the short-term and long-term lagged tropical 
cyclone parameters was 0.117. The wavelet cross-coherence plot be
tween monthly precipitation in southern Florida and the reported 
ciguatera poisoning cases is provided in Fig. 4f, and a short-term lag of 
the current to the previous 3 months was considered.

The selected parameters for each optimal model are provided in 
Table 2. The first model was the full negative binomial (NB) model, with 
47 parameters and performing stepwise selection. The optimal negative 
binomial model had an AIC of 802 (Table 2). The second model was a 
zero-inflated negative binomial model (ZINB), implemented to consider 
the potential excessive zeros caused by unreported ciguatera poisoning 
cases. The stepwise selection method yielded an optimal model with the 
lowest AIC (than the NB model) of 784.099, with six parameters in the 
count model and eight parameters in the zero model. By pruning the 
insignificant parameters from the optimal ZINB model (that was iden
tified through the forward selection method), the third optimal (pruned) 
model was obtained, with an AIC of 788.625.

The model summary for the pruned optimal ZINB model is given in 
Table 3. The model summary provides the coefficients and significance 
values for each predictor in the count and zero models. The stepwise and 
pruned model had all the count coefficients being significant. In the 
count portions of the models, each model had the same parameters with 
the same signs of the coefficients, except the pruned model had an 
insignificant interaction between the Florida population and the short- 
term HotSpot value removed. The zero portions of the optimal ZINB 
models did not differ in parameters or the signs of their coefficients. In 
the pruned model, a one standardized unit increase would result in a 
multiplicative change in the expected number of ciguatera poisoning 
cases by the exponent of the coefficient. For the zero portion of the 
model, a one standardized unit increase would result in a multiplicative 

Table 1 
Identified optimal lag for each predictor in the model. The lags were determined 
from the wavelet coherence plots between the reported number of ciguatera 
poisoning cases in Florida and the predictors.

Predictor Lag

Season Current month
Population Current month
Amberjack (Seriola dumerili) Landings Current to the Previous 2 Months
Red Snapper (Lutjanus campechanus) Landings Current to the Previous 3 Months
Red Grouper (Epinephelus morio) Landings Current to the Previous 3 Months
Scamp Grouper (Mycteroperca phenax) Landings Current to the Previous 3 Months
Short-term Tropical Cyclone Frequency Current to the Previous 3 Months
Long-term Tropical Cyclone Frequency Previous 32–46 Months
Short-Term HotSpot Current and Previous Month
Long-Term HotSpot Previous 8–15 Months
Short-Term Precipitation Current to the Previous 3 Months

Table 2 
The goodness of fit and the number of model parameters for each optimal model 
to predict the number of ciguatera poisoning cases in Florida.

Model Name Zero Model (# 
Param.)

Count Model (# 
Param.)

AIC

NB Stepwise NA 68 802.012
ZINB Stepwise 8 6 784.099
ZINB Pruned 8 5 788.625
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change in the odds of a zero being an excess zero by the exponent of the 
coefficient. Thus, an increase in a positive coefficient relates to an in
crease in the odds that an observed zero is an excess zero, and the 
opposite for a negative coefficient predictor. Fig. 5 provides a graphical 
representation of the pruned model and is shown in Table 3.

It should be noted that the model predicts the average number of 
ciguatera poisoning cases in comparison with the observed ciguatera 
poisoning cases. As such, the model demonstrated a fairly accurate fit 
with the number of reported ciguatera poisoning cases (Fig. 6). While 
some predicted zeros did match the reported zeros (i.e., true zeros), 
some predicted non-zero ciguatera poisoning cases did not match the 
reported zeros (i.e., excess zeros). The model under-predicted the peaks, 
particularly after 2011, perhaps due to predicting average ciguatera 
poisoning. The model had a slight increase in the predicted number of 
cases over time, but with a decline starting in 2020. On average, both the 
predicted and the observed ciguatera poisoning cases peaked in the 
summer months. We also note that the model was poor at predicting 
cases of ciguatera poisoning between 2013 and 2016, during a period of 
few hurricanes.

To have a closer look and visualize the goodness of the model, the 
rootogram of predicted and true counts are shown in Fig. 7 for different 
frequencies of ciguatera poisoning cases. The figure displays the number 
of ciguatera poisoning cases on the x-axis vs. the frequency (number of 
months) of the number of ciguatera poisoning cases. Predicted (ex
pected) ciguatera poisoning counts by the model are shown by the thick 
red line; observed ciguatera poisoning counts are shown as gray bars, 
which are hanging from the red line of expected counts on the x-axis, 
such as the count bin, 0 ciguatera poisoning count, 1 ciguatera poisoning 
count, 2 ciguatera poisoning count, and so on. The Y-axis is the square 
root of the observed and expected ciguatera poisoning counts, where the 
square root transformation allows for departures from expectations to be 
seen even at small frequencies. Overall, predicted expected ciguatera 
poisoning counts follow the same trends as observed ciguatera poisoning 
counts. The model under-predicted the frequency of 4 ciguatera 

poisoning cases, slightly underpredicted the frequency of zero, 7, 10, 12, 
and 15 ciguatera poisoning cases, and slightly overpredicted the fre
quency of 1, 2, and 3 ciguatera poisoning cases. However, we should 
point out that the predicted values by the model are the expected or 
average number of ciguatera poisoning cases, while the observed values 
are the true number of ciguatera poisoning cases that have been re
ported. Therefore, the predicted number of ciguatera poisoning cases by 
the model is relatively accurate.

To evaluate the predictive capabilities of the pruned optimal model, 
classic cross-validation techniques were not relevant and were not per
formed to avoid data bleeding of the lagged values, which could bias the 
predictions.

Rather, a time-progressive time series split validation was imple
mented. The validation was performed using three time series with 
train-test splits with the first 65, 60, and 55 % of the data for training, 
and the remaining portion, i.e., 35, 40, and 45 %, used for testing the 
models. These three time series splits were selected to have enough data 

Table 3 
Model summary of the pruned optimal zero-inflated negative binomial model to predict the number of ciguatera poisoning cases in Florida.

COUNT MODEL COEFFICIENTS ZERO-INFLATION MODEL COEFFICIENTS

NEGBIN WITH LOG LINK BINOMIAL WITH LOGIT LINK

Parameter Coefficient Std. Error p-Value Parameter Coefficient Std. Error p-Value
Intercept 1.218 0.071 < 0.001 Intercept − 22.362 11.832 0.059
HotSpotS 0.432 0.068 < 0.001 Red Snapper − 21.497 11.222 0.055
StormL: Red Grouper 0.192 0.070 0.006 Amberjack 4.293 2.705 0.113
Population: Precipitation − 0.388 0.098 < 0.001 Red Snapper: HotSpotS 15.412 7.898 0.051
StormL: Amberjack 0.308 0.093 0.001 Population: StormL 10.862 5.858 0.064
Red Snapper: StormS 0.196 0.104 0.060 Red Snapper: Spring 10.173 6.551 0.120
log(θ) 0.868 0.202 < 0.001 Red Snapper: Summer − 8.171 4.616 0.077
​ ​ ​ ​ Red Snapper: Winter 8.766 5.972 0.142
​ ​ ​ ​ HotSpotS: StormL − 8.887 5.747 0.122

Fig. 5. Coefficients with 2 standard errors for each parameter in the pruned zero-inflated negative binomial model to predict the number of ciguatera poisoning cases 
in Florida. (a) The coefficients for the count portion of the model; (b) The coefficients for the zero-inflated portion of the model.

Fig. 6. Predicted number of ciguatera poisoning cases (red) using the pruned 
zero-inflated negative binomial model superimposed on the observed number 
of ciguatera poisoning cases (green) in Florida from 2006 to 2020.
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for both training and testing. The testing model’s raw predictions and 
the number of cases over time were plotted in Fig. 8. This process was 
repeated to observe general trends using loess smoothing at a span of 
0.25 on the predictions and cases. The mean squared error (MSE) of the 
raw model predictions with the true number of ciguatera poisoning 
cases was calculated and superimposed onto each plot. The two pre
dictions using 65 and 60 % of the data for training had a smaller MSE 
than the predictions of the model using fewer data for training. While 
the predictions using the models with 60 and 65 % training only differ 
by about 1.18 MSE, the 60 % trained model predictions had a better fit, 
following the dominant trends of the number of ciguatera poisoning 
cases in Florida, for its testing time range.

4. Discussion

The awareness of Ciguatera outbreaks in Florida has increased over 
the past decades, but inaccurate reporting has limited our understanding 
of the dynamics and severity of these outbreaks. There have been few 
studies on the number of cases of Ciguatera in Florida and the potential 
environmental influences that can cause outbreaks. In this study, the 
number of reported Ciguatera cases in Florida was modeled as a 
response to several predictors, including the HotSpot index, precipita
tion, number of tropical storms, the human population density of Flor
ida, season, and the commercial landings of four common fish species.

In the stepwise and the optimal pruned model, there was a strong 
positive relationship between ciguatera poisoning cases and the short- 
term HotSpot values. The interaction between the short-term HotSpot 

Fig. 7. Rootogram of the predicted (expected) ciguatera poisoning cases (solid red line) vs. observed ciguatera poisoning cases (gray bars).

Fig. 8. Predicted number of ciguatera poisoning cases (red) from the testing sets using the last 35 %, 40 %, and 45 % of the data from top to bottom, respectively. 
Each iteration used the pruned zero-inflated negative binomial model features trained on the remaining portions of the split time series. The predictions are 
superimposed on the observed number of ciguatera poisoning cases (blue) in Florida from 2006 to 2020.
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values with the human population density was present in the stepwise 
model, although it was insignificant and was removed to create the 
optimal pruned model. These results suggest that, given all other pa
rameters remain constant, high short-term HotSpot values are associated 
with an increase in the expected number of ciguatera poisoning cases. 
The long–term effect of HotSpot values, from 8 to 15 months, did not 
play a major role in the models.

The results of studies in the Pacific Ocean, accompanying some 
studies in Florida, have previously shown a strong relationship between 
large storms and ciguatera poisoning, with large storms clearing reefs 
and thereby creating habitat for ciguatoxin-containing dinoflagellates 
(Gingold et al., 2014; Baker et al., 2008; Rongo and van Woesik, 2013; 
Chan, 2016; Barrett, 2014). For the optimal model of the study, the 
interaction between the long-term impact from the number of tropical 
cyclones and the landings of two fish species, Red Grouper and 
Amberjack, had a strong positive relationship with the expected number 
of ciguatera poisoning cases. Also, the interaction between the 
short-term impact of the number of tropical cyclones with Red Snapper 
was present in the count model, with a positive relationship. Therefore, 
these fish can be used as a proxy for the number of ciguatoxin-infected 
fish that are consumed. The interaction between the long-term impact of 
the number of tropical storms and the human population of Florida 
showed a positive coefficient and a p-value of 0.064 in the zero-inflated 
model. This interaction suggests that an increase in storm frequency will 
likely reduce the chance of having zero ciguatera poisoning cases. Un
like the number of tropical storms, the interaction between the popu
lation of Florida and precipitation had the only negative and significant 
coefficient in predicting the number of ciguatera poisoning cases. Thus, 
when the number of people in Florida remained constant, an increase in 
precipitation in Southern Florida correlates to a decrease in the number 
of ciguatera poisoning cases.

The landings of three of the fish species, Red Snapper, Red Grouper, 
and Amberjack, had significant coefficients in the optimal models. It is 
important to note that Scamp Grouper was not a significant parameter in 
either model, likely due to its consistently low landings, and therefore, 
few infected fish were consumed. Even though Amberjack had a slightly 
decreasing trend over time, and can be partially pelagic, it still had a 
larger positive coefficient in the count model than the other fish species. 
This effect could be because Amberjack had a shorter lag, or that 
Amberjack can reach larger sizes than Red Grouper or Red Snapper and 
can therefore accumulate higher levels of toxins. Interestingly, Red 
Snapper appeared in most of the parameters for the zero-inflated model 
and also had the largest regions of correlation to ciguatera poisoning 
cases in the cross-coherence plot, possibly because the trend for the 
landings of Red Snapper had the least variability in comparison to 
Amberjack and Red Grouper. Individually, Red Snapper had the most 
extreme coefficient in the zero-inflated model. The result suggests that if 
a month has no reported cases, when the Red Snapper landings are high, 
the zero is more likely to be a true zero than an excess zero. The inter
action between Red Snapper and short-term HotSpot had the largest 
positive coefficient, with a p-value of 0.051, suggesting that having zero 
ciguatera poisoning cases is unlikely with high anomalous ocean 
temperatures.

The optimal pruned model was validated using three time series 
splits using the first 65, 60, and 55 percent of the data for training and 
the remaining for testing. Using 60 % of the time series provided the 
lowest MSE, although comparable to when using 65 % of the data for 
training, while using 55 % of the data for training had an increase in 
error likely because of lacking enough data to train on. The testing re
sults lacked the power to make accurate monthly predictions in com
parison to the model fit on the whole data but could predict the long- 
term trends of ciguatera poisoning cases. This suggests the optimal 
pruned model is not just overfit to the data but rather the predictors have 
a relationship to the overall trend of ciguatera cases in Florida.

The validation was performed using three time series with train-test 
splits with the first 65, 60, and 55 % of the data for training, and the 

remaining portion, i.e., 35, 40, and 45 %, used for testing the models. 
These three time series splits were selected to have enough data for both 
training and testing. The testing model’s raw predictions and the num
ber of cases over time were plotted in Fig. 8. This process was repeated to 
observe general trends using loess smoothing at a span of 0.25 on the 
predictions and cases. The mean squared error (MSE) of the raw model 
predictions with the true number of ciguatera poisoning cases was 
calculated and superimposed onto each plot. The two predictions using 
65 and 60 % of the data for training had a smaller MSE than the pre
dictions of the model using fewer data for training. While the predictions 
using the models with 60 and 65 % training only differ by about 1.18 
MSE, the 60 % trained model predictions had a better fit, following the 
dominant trends of the number of ciguatera poisoning cases in Florida, 
for its testing time range. More specifically, for 65/35 split, the model 
captures many of the fluctuations in case counts, particularly in periods 
of moderate incidence. Due to smoothing of extreme variations, some 
peak outbreaks are underestimated, while some troughs are over
estimated. For 60/40 split, yields the lowest MSE with a balanced per
formance. The model tracks the temporal dynamics of case counts 
reasonably well, with improved alignment to both peaks and troughs 
compared to the 65/35 split. The smooth predictions show that the 
general trends are predicted with fair accuracy. For 55/45 split with a 
larger proportion of test data, the model does not track the fluctuations 
yielding a higher MSE. Model predictions using this data split are 
particularly smoother than observed data, leading to poor alignment 
with outbreak peaks and increased error.

5. Conclusions

Although the proposed model varied in capturing the different as
pects of the data, the model appeared to predict the observed ciguatera 
poisoning cases reasonably accurately and underestimated or over
estimated the number of ciguatera poisoning cases depending on the 
year. In 2006, both models poorly predicted cases of ciguatera 
poisoning. This is potentially because 2006 was the first year of the 
study when reporting was likely to be more sporadic than in other years. 
This study has some other limitations, including the lack of monthly 
reporting per county, which hopefully can be resolved for future studies.

In conclusion, the optimal zero-inflated negative binomial model 
suggested the strongest predictors of the number of reported ciguatera 
poisoning in Florida were short-term HotSpot values, precipitation, the 
number of storms, and Amberjack landings. These models provide a 
basis for predicting Ciguatera fish poisoning, a relatively unknown and 
potentially upcoming health and economic issue in Florida. One of the 
main challenges of the study was the lack of a complete geographical 
data set for both response and predictor variables. Obtaining more 
complete and accurate data sets on reported cases, such as what type of 
fish resulted in the poisoning, or the number of fish caught for each fish 
species in each county, would help improve the predictive models. The 
number of tropical cyclones had a positive relationship with Ciguatera 
outbreaks, and future work should be performed to further investigate 
this impact. This research agrees with studies in the Pacific Ocean that 
show the increase in intensity and frequency of severe storms increases 
the likelihood of Ciguatera outbreaks (Rongo and van Woesik, 2013). 
With hurricanes in Florida becoming more severe, and with an increase 
in anomalous ocean temperatures, increasing the intensity and fre
quency of hurricanes, further research should investigate the implica
tions of global climate change on ciguatera poisoning in Florida. The 
data collection for ciguatera poisoning cases can be improved by 
implementing protocols for more accurate diagnosis and reporting. In 
addition, an improved database on ciguatera poisoning cases will help to 
reduce the risk of ciguatera poisoning, potentially protecting millions of 
Florida residents and tourists annually.

In this work, we studied the Ciguatera poisoning trends and proposed 
a model for prediction of Ciguatera poisoning counts. This is a particu
larly challenging task due to the interplay of multiple and often 
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nonlinear factors such as environmental changes (e.g., algal blooms), 
dietary exposure pathways, reporting variability, and population 
movement. These inherent complexities mean that perfect alignment 
between predicted and observed cases is unlikely. The proposed model 
yields moderate but meaningful trend detection performance. While the 
MSE values are not exceptionally low by standard forecasting bench
marks, they are decent and promising in this context. Importantly, the 
model captures the seasonal and cyclical trends in Ciguatera case inci
dence which is critical for public health preparedness. The model per
forms better at predicting broad temporal dynamics rather than exact 
case counts which are evident in the smooth graphs where predicted 
trends closely follow the observed cycles, even if individual peaks differ 
in magnitude. Such performance is valuable, specifically where fore
casting whether the trend is likely to rise or fall may be far more 
actionable than predicting exact numbers. It was revealed that there is a 
trade-off between train/test split ratios. The 60/40 split demonstrates 
the best overall performance with lowest MSE and the best alignment 
with observed dynamics. Too little training data in 55/45 split reduces 
predictive power, while too much training data in 65/35 split may limit 
generalization. This balance highlights the importance of carefully 
selecting data partitioning strategies for prediction of rare events. In 
summary, although the MSE values suggest there is room for improve
ment, the model’s ability to capture temporal fluctuations and broad risk 
dynamics of Ciguatera poisoning should be viewed as a success given the 
inherent difficulty of modeling this condition. From a public health 
standpoint, even moderately accurate forecasts can guide early warning 
systems, targeted awareness campaigns, and proactive clinical pre
paredness in regions prone to outbreaks. This establishes a valuable 
baseline model that can be iteratively refined through incorporation of 
environmental predictors such as sea surface temperature, harmful algal 
bloom, dietary patterns, and socio-economic factors, which could 
further reduce predictive error and enhance reliability.
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